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Introduction

Spacelike hypersurfaces with prescribed mean curvature have played
a major role in the study of Lorentzian manifolds� Maximal �mean
curvature zero� hypersurfaces were used in the �rst proof of the positive
mass theorem ������� Constant mean curvature hypersurfaces provide
convenient time gauges for the Einstein equations ������ For a survey of
results we refer to ����

In �	� and �
�� it was shown that entire solutions of the maximal
surface equation

H�u� � div

�
Dup

�� jDuj�

�
� 


for spacelike hypersurfaces in Minkowski space are linear� The proof of
this remarkable result is based on an interior a priori estimate for the
gradient function

v �
�p

�� jDuj� �

In fact� estimates for this quantity form the basis of existence proofs for
spacelike hypersurfaces with prescribed mean curvature functions in a
variety of contexts� These surfaces are described by nonlinear elliptic
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partial di�erential equations of the same type as the maximal surface
equation� The a priori gradient estimate implies that the equation is
uniformly elliptic so that topological �xed point arguments can be em�
ployed in order to prove the existence of a solution �see ���� �������� ������
These arguments are indirect in nature�

In ��� and ���� a direct approach to the existence problem was taken�
Solutions of mean curvature equations were constructed as stationary
limits of a geometric heat �ow which evolves the spacelike hypersur�
faces in the direction of their future directed unit normal with speed
given by the di�erence of the actual and the desired mean curvature�
This so�called mean curvature �ow has been extensively studied in Eu�
clidean space �see ������ In ���� the case of cosmological spacetimes was
treated where one is dealing with the �ow of compact hypersurfaces�
In ���� noncompact hypersurfaces in asymptotically �at spacetimes were
considered but with the strong restriction that the initial surface be
asymptotic to a time slice of the spacetime� This essentially amounts
to assuming a global bound for the gradient function�

In this paper� we study mean curvature �ow of noncompact space�
like hypersurfaces in Minkowski space without any restrictions on their
behaviour at in�nity� It turns out that some of the most interesting solu�
tions of this �ow have exponentially growing mean curvature at in�nity
and therefore cannot be dealt with in the framework of any standard
theory for parabolic di�erential equations� In Euclidean space� mean
curvature �ow of noncompact hypersurfaces was studied in ��
�������

Minkowski space Ln�� isRn�� endowed with the metric h�� �i de�ned
by hX�Y i � x � y � xn��yn�� for vectors X � �x� xn���� Y � �y� yn����
Spacelike hypersurfaces M � Ln�� have an everywhere timelike normal
�eld which we assume to be future directed and to satisfy the condition
h�� �i � ��� Such surfaces can be expressed as graphs of functions
u � Rn � R satisfying jDu�x�j � � for all x � Rn�

We consider a family of spacelike embeddings

Xt � X��� t� � Rn � Ln��

with corresponding hypersurfacesMt � Xt�R
n� satisfying the evolution

equation

���
�X

�t
� H�

on some time interval� Here� H � divMt� denotes the mean curvature of
the hypersurfaceMt� EachMt is the graph of a function u��� t� satisfying
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jDu��� t�j � �� Equation ��� is equivalent up to di�eomorphisms in Rn

to the equation

���
�u

�t
�
p
�� jDuj� div

�
Dup

�� jDuj�

�
�

which is the parabolic analogue of the maximal surface equation�
Examples of solutions of ��� are the spacelike hyperboloids of con�

stant mean curvature
p

n
�t given by the functions

��x� t� �
p
jxj� � �nt�

These are homothetic solutions with initial data given by the upper light
cone at 
 which remain asymptotic to the same light cone for all t � 
�
i�e�� do not move at spatial in�nity�

More interestingly� there are also solutions of ��� �or equivalently
���� which move by vertical translation� Let u� � R

n � R be an initial
spacelike hypersurface with mean curvature satisfying the equation

��� H�u�� �
�p

�� jDu�j�

or equivalently

p
�� jDu�j� div

�
Du�p

�� jDu�j�

�
� ��

Then a solution u of ��� is given by

u�x� t� � u��x� � t�

In the case n��� u��x� � log coshx is a particular solution of ���� Note
that the graph of this solution is geodesically incomplete� The mean
curvature grows exponentially at in�nity� In particular� the maximum
principle does not apply in this case� The translating solution given by
u�x� t� � log cosh x� t lies initially underneath the homothetic solution
given by

p
x� � �t but crosses it at in�nity at time t � log ��

In Section �� we establish the existence of solutions of ��� for gen�
eral n� The construction of translating solutions of mean curvature
�ow in more general asymptotically �at spacetimes and their possible
applications in general relativity are the subjects of further investiga�
tion� Translating solutions can be regarded as a natural way of foliating
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spacetimes by almost null like hypersurfaces� Particular examples may
give insight into the structure of certain spacetimes at null in�nity�

In Section �� we prove an interior estimate inside

KR�
� � fX � Ln��� hX�Xi � R�g
for the gradient function and the mean curvature of Mt which has the
form

sup
Mt�KR���

�v � jHj� � c�

for t � c�n�R� where c� depends on n�R and supM��K�R����v � jHj��
We furthermore derive similar bounds for the second fundamental form
of Mt and its covariant derivatives�

In Section �� we prove that the initial�boundary value problem cor�
responding to ��� on bounded domains of Rn has a smooth solution for
all time which converges for t � � to the unique maximal hypersur�
face with the given boundary values� This result applied on increasing
domains in combination with the interior estimates is then used to es�
tablish the following main result of this paper�

Theorem� For arbitrary spacelike initial data u� � R
n � R� equa�

tion ��� admits a smooth spacelike solution u for all t � 
 which satis�es

u��� 
� � u��

Note that in contrast to even the standard linear heat equation� no
assumption about the behaviour of the initial data at in�nity has to be
imposed� A corresponding result for mean curvature �ow in Euclidean
space was established in �����

�� Maximum principles and local height bounds

We list without proof the particular versions of the standard maxi�
mum and comparison principles used in this paper�

���� Proposition� Let u� and u� be solutions of ��� on a bounded

domain � � Rn� Suppose that u��x� 
� � u��x� 
� for all x � � and

u��x� t� � u��x� t� for all x � �� and t � 
� Then u��x� t� � u��x� t� for
all x � � and t � 
�

���� Proposition� Let Mt � graphu��� t� where u � �� �
� T �� R

solves ���� Suppose the function f � �� �
� T �� R satis�es f � 
 and

the inequality �
d

dt
��

�
f � 
�
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where � denotes the Laplace�Beltrami operator on Mt� If sptf��� t� is

compact for every t � �
� T �� then

sup
�	

f��� t� � sup
�	

f��� 
��

If � is bounded� then

sup
�	�
��T �

f � maxfsup
�	

f��� 
�� sup
�	�
��T �

fg�

���� Proposition� Let � be a bounded domain in Rn and u� � ��
R be spacelike� Let u be a solution of ��� in � � �
� T � which satis�es

u��� 
� � u� in � and u��� t� � u� on �� for t � 
� Then for all x � �
and t � �
� T � the inequality

ju�x� t�� u��x�j �
p
�nt

holds�

Proof� Since u� is spacelike the inequality

u��y�� jx� yj � u��x� � u��y� � jx� yj
holds for all x� y � �� For every y � � we use Proposition ��� to compare
the solution u with the homothetic solutions corresponding to the initial
data u��y�	 jx� yj given by

u��y�	
p
jx� yj� � �nt�

This yields the inequality

u��y��
p
jx� yj� � �nt � u�x� t� � u��y� �

p
jx� yj� � �nt

for every x � �� Setting x � y implies the estimate�

���� Proposition� There exists a spacelike solution u � Rn � R of

the equation

��� H�u� �
�p

�� jDuj� �

Proof� Note that for radially symmetric solutions ��� reduces to
the equation

u��

�� �u���
�
n� �

r
u� � �
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on the real line which can be solved using ODE methods�
We outline an alternative approach� which seems to be overkill in the

case of radially symmetric solutions but has the potential to generalize
to asymptotically �at spacetimes� It is based on the observation that
constant mean curvature spacelike hypersurfaces can be used as barriers
for solutions of ��� on bounded domains�

For k � N and �xed a � 
 we solve the Dirichlet problems

H�uk� �
�p

�� jDukj�
in Bk�
��

uk � k � a on �Bk�
�

on balls in Rn� By symmetry� the solutions uk are of course radially
symmetric having constant boundary values� In general� solvability fol�
lows from ��� since the right�hand side of the equation satis�es the mean
curvature structure conditions required there� Interior estimates for

v�uk� �
�p

�� jDukj�
and higher derivatives of uk independent of k hold on any �xed ball
BR�
� � Rn� This uses again the symmetry of our solution which
guarantees constant height on �BR�
�� In a more general construction�
this is the step which requires additional work� The crucial observation
is the inequality

uk�x� �
p
jxj� � n� � a�

which holds for all x � Bk�
�� This follows by comparing uk with the
constant mean curvature hypersurfaces given by

��k �x� �
p
jxj� � n� �

p
k� � n� � k � a�

Their mean curvatures satisfy the inequality H���k � � � � H�uk� in
Bk�
� while �

�
k � uk on �Bk�
�� The comparison principle of ��� then

yields that uk � ��k in Bk�
��
This argument provides a height bound for uk over �xed balls BR�
�

independent of k� In view of the uniform derivative estimates we can
therefore let k �� to obtain the result�

�� Evolution equations

Most of the evolution equations in this section were derived in ����
They will form the basis for the a priori estimates of the next section�
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We �rst recall that in view of the geometric identity �X � H� for the
position vector of the hypersurfaceMt� equation ��� is equivalent to the
nonlinear heat equation

���
�X

�t
� �X�

Here� � denotes the Laplace�Beltrami operator on Mt�

���� Proposition� The Lorentz distance function z � hX�Xi
satis�es the evolution equation�

d

dt
��

�
�z � �nt� � 
�

Proof� Using ���� we calculate

d

dt
z � �HhX� �i�

while �see ����

�z � ��n�HhX� �i��
The length of the tangential projections of vectors onto spacelike hy�

persurfaces M � graphu with normal � is controlled by the gradient
function

v � �h�� en��i � �p
�� jDuj� �

We will frequently use the inequalities jrxn��j � v and jrrj � v �see
����� where r denotes the tangential gradient on Mt� and r � jxj is
Euclidean distance on Rn�

���� Proposition� The Euclidean distance function r � jxj on Rn

satis�es ����
�
d

dt
��

�
r�
���� � c�n�v�

Proof� Since r� � z � x�n�� for X � �x� xn���� from ��� and
Proposition ��� we obtain that�

d

dt
��

�
r� � ��n� �jrxn��j��
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In view of the inequality jrxn��j � v this implies the result�

���� Proposition� The gradient function satis�es the evolution

equation �
d

dt
��

�
v � �jAj�v�

Here� jAj� denotes the square of the norm of the second fundamental
form A � �hij� on Mt� which is de�ned by

hij � h�i� D�j�i
for a local orthonormal frame ��� � � � � �n of Mt�

For general spacelike hypersurfaces we recall the following inequality
which is the key to the basic gradient type estimates �see ���� ���� �
��
������

���� Lemma� On any spacelike hypersurface M in Ln�� we have

the inequality

jAj�v� � �� �
�

n
�jrvj� �H�v��

In combination with Proposition ��� this implies

���� Corollary� The gradient function satis�es the inequality�
d

dt
��

�
v� � ���� � �

�n
�jrvj� � �H�v��

���� Proposition� The second fundamental form and its deriva�

tives satisfy

�i�

�
d

dt
��

�
H � �HjAj��

�ii�

�
d

dt
��

�
jAj� � ��jrAj� � jAj� � c�n��

�iii�

�
d

dt
��

�
jrmAj� � ��jrm��Aj� � cm�� � jrmAj���

where cm � cm�m�n� v�
Pm

j�� jrj��Aj��
For later use we note that by combining Proposition ��
 �i� with the

inequality jAj� � �
nH

� one obtains the following�
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���� Corollary� The square of the mean curvature satis�es�
d

dt
��

�
H� � � �

n
H� � �jrHj��

�� Interior estimates

The proof of the existence theorem in the last section is based on the
following interior estimate which simultaneously controls the gradient
function and the mean curvature of Mt inside the set

KR�
� �
�
X � Ln��� z � hX�Xi � R�

�
�

The estimates will also be applied to solutions of ��� with boundary�
However� we will always assume that the hypersurfaces Mt have no
boundary inside the sets in which we are estimating�

For related estimates in the elliptic case we refer to ���� ���� �
� and
��
��

���� Theorem� Suppose that Mt 
KR�
� is compact in Ln�� for

t � �
� R
�

�n �� Let � � supM��KR���H
�� There are constants p� q � 
 which

only depend on n such that for all t � �
� R
�

�n �

sup
Mt

�
v�

�

���H����q
�R� � z � �nt�p

�

� ec�n�q
t sup
M�

�
v�

�

���H����q
�R� � z�p

�
�

We present the proof in two steps contained in the following lem�
mata�

���� Lemma� For su�ciently large q � q�n�� the quantity g �
v� �

�
�H����q
satis�es the inequality

�
d

dt
��

�
g � ��� � ��

jrgj�
g

� cg�

where � � ��n� � 
 and c � c�n� q����
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Proof� Let g � v�h�H��� where we will substitute h�y� � ���y����q
later� Denoting derivatives of h by � and using Corollaries ��	 and ���
as well as h � 
 and h� � 
� we calculate�

d

dt
��

�
g �� ��� �

�

�n
�jrvj�h� �H�v�h� �

n
H�h�v�

� h��jrH�j�v� � �h�hrv��rH�i�
�
�

By Young�s inequality ab � �a� � �
��b

� with � � �
n � we estimate

j�h�hrv��rH�ij � j�h�vHhrv�rHij � �

n
jrvj�h��
n

�h���

h
v�H�jrHj�

which yields�
d

dt
��

�
g �� ��� �

�

�n
�jrvj�h� �H�v�h� �

n
H�h�v�

� �

�
�n

�h���

h
� h��

�
v�H�jrHj��

���

�From the inequality ja� bj� � �� � ��jaj� � �� � �	��jbj� for � � 
 we
derive

jrgj� � j�hvrv � �v�h�HrHj�

� ��� � ��v�jrvj�h� � �

�
� �

�

�

�
v��h���H�jrHj��

This implies

��� �����
jrgj�
g

� ������� jrvj�h�������
�
� �

�

�

�
v�
�h���

h
H�jrHj��

Choosing � � ��n� � 
 such that �� � ��� � �� �
�n and substituting ���

into ��� we arrive at�
d

dt
��

�
g �� �� � ��

jrgj�
g

� �H�v�h� �

n
H�h�v�

� �

�
c�n�

�h���

h
� h��

�
v�H�jrHj��

Again using Young�s inequality� we estimate

�H�v�h � �

n
H�h�v� �

n

�

h�

h�
v��
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which implies�
d

dt
��

�
g � ������

jrgj�
g

�
n

�

h

h�
g��

�
c�n�

�h���

h
� h��

�
v�H�jrHj��

The function given by h�y� � ��� y����q satis�es

c�n�
�h��y���

h�y�
� h���y� �

�

q�
�c�n�� �q � ����� � y��

�

q
�� � 


for su�ciently large q depending on n� Moreover� since 
 � h
h� � q� we

conclude �
d

dt
��

�
g � ��� � ��

jrgj�
g

� �
n

�
q��g�

���� Lemma� Let 
 � �R� � z � �nt�p� Then for su�ciently large

p depending only on � � ��n� the inequality�
d

dt
��

�
g
 � cg


holds where c depends on n and ��

Proof� Abbreviating 
 � 
�r�� denoting derivatives of 
 by � and
using the previous lemma we calculate that�

d

dt
��

�
g
 �� �� � ��

jrgj�
g


 � cg
 � g
�
�
d

dt
��

�
�z � �nt�

� g
��jrzj� � �hrg�r
i�
Here c depends on n� q and �� We estimate

j�hrg�r
ij � �� � ��
jrgj�
g


 �
�

� � �

jr
j�



g

and use the identities jr
j� � �
���jrzj� and
�
d
dt ��

�
�z � �nt� � 


�see Proposition ���� to obtain�
d

dt
��

�
g
 � cg
 �

�
�

� � �

�
���



� 
��

�
jrzj��

For 
�r� � �R� � r�p we have

�

� � �

�
���



� 
�� �

�
p�

� � �
� p�p� ��

�
�R� � z � �nt�p�� � 
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for su�ciently large p depending on ��

Proof of Theorem ��	� Since by assumption the hypersurfaces
Mt are compact inside the support of 
� we can apply the maximum
principle of Proposition ��� to f � e�ctg
 to conclude

sup
Mt

g
 � ect sup
M�

g


and therefore the desired estimate�

In the next section� the main estimate of Theorem ��� will be applied
in balls in Rn� Let CR denote the cylinder BR �R where BR � fx �
Rn� jxj � Rg� Since CR � KR� the theorem applied with �R instead of
R immediately yields

���� Corollary� For t � �
� c�n�R��� the estimate

sup
Mt�CR

�v � jHj� � c�

holds where c� depends on n�R and supM��K�R
�v � jHj��

���� Remark� Having obtained estimates for v we are now in
a position to use the Euclidean distance function r � jxj for further
localization arguments� In view of Proposition ��� and the inequality
jrrj � v� Corollary ��� implies that for t � c�n�R�����

�
d

dt
��

�
r�
���� � c�n� c��

and jrrj � c� in CR�

���� Proposition� Suppose that supMt�CR
v � c� for t � �
� T ��

Then the curvatures of Mt for t � �
� T � can be estimated by

sup
Mt

jAj��R� � r��� � c��

where c� � c��n�R� c�� supM��CR
jAj���

Proof� Abbreviating 
�r�� � �R� � r���� we calculate� in view of
Proposition ��
 �ii���

d

dt
��

�
jAj�
 �� �jrAj�
 � jAj�
 � c�n�


� jAj�j
�j
����
�
d

dt
��

�
r�
����

� jAj�
��jrr�j� � �
�hrjAj��rr�i�
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Estimating

j�
�hrjAj��rr�ij � �jrAj�
 � �
�
���



jAj�jrr�j�

we obtain�
d

dt
��

�
jAj�
 �� jAj�
 � c�n�
 � jAj�j
�j

����
�
d

dt
��

�
r�
����

�

�
�
�
���



� 
��

�
jAj�jrr�j��

We now substitute 
 into the last term� estimate j
�j � R� and use
Remark ��	 to arrive at�

d

dt
��

�
jAj�
 � �jAj�
 � c�n�
 � c�n� c��R

�jAj��

At a point where jAj�
 �rst reaches a maximum larger than supM�
jAj�
�

in view of the inequality 
 � R� we therefore obtain that

jAj�
 � c�n�R� � c�n� c��R
�jAj��

Multiplying by 
 yields

�jAj�
�� � c�n�R� � c�n� c��R
�jAj�
�

and hence we conclude from Young�s inequality that

jAj�
 � c�n�R� c�� sup
M��CR

jAj��

at the maximum point� This implies for t � �
� T �

sup
Mt

jAj�
 � c�n�R� c�� sup
M��CR

jAj���

���� Proposition� Suppose supMt�CR
v � c� and supMt�CR

jAj� �
c� for t � �
� T �� Then for every m � � and t � �
� T � we have the

estimate

sup
Mt�CR

�

jrmAj� � cm�

where cm � cm�n�m�R� c�� c��max��j�m supM��CR
jrjAj���
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Proof� We proceed exactly as in the corresponding case of mean
curvature �ow in Euclidean space �see ���� Ch���� ����� Utilizing the
bounds on v and jAj� we show that for su�ciently large K � 
 the
function f � jrAj��K � jAj�� satis�es an inequality of the type�

d

dt
��

�
f � ��f� � C�

where � � 
� By Remark ��	� the quantities jrrj and j � ddt ��
�
r�j

are controlled in CR� We can therefore estimate f�R� � r��� as in �����
Bounds for the higher derivatives are established inductively�

�� Longtime existence theorems

In this section� we will �rst consider the initial�boundary value prob�
lem associated with equation ��� for bounded domains � � Rn� We will
then construct a global solution of ��� for arbitrary spacelike initial data
u� � R

n � R� This is achieved by solving initial �boundary value prob�
lems on increasing domains� and then using the interior estimates of the
previous section to extract a subsequence of solutions which converges
smoothly on compact subsets�

���� Theorem� Let � � Rn be a bounded domain with smooth

boundary� Let u� � ��� R be smooth and strictly spacelike in the sense

that sup�	 jDu�j � �� Then the equation

���
�u

�t
�
p
�� jDuj� div

�
Dup

�� jDuj�

�

has a smooth solution in � for all t � 
� which satis�es u��� 
� � u� in �
and u��� t� � u� on ��� Moreover� as t��� u��� t� converges smoothly

to the solution of the maximal surface equation with boundary data u��

Proof� Proposition ��� implies that any solution of ��� on a time
interval �
� T � satis�es

sup
�	�
��T �

juj � sup
�	

ju�j�

In view of Proposition ��� and Proposition ��� we also have

sup
�	�
��T �

v � maxfsup
�	

v�
�� sup
�	�
��T �

vg�
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Estimates on sup�	�
��T � v are derived as in ���� Note that again in
view of the maximum principle the radially symmetric barriers used
in ��� Proposition ���� will work in the parabolic setting as well� Being
maximal hypersurfaces these barriers are stationary solutions of ���� and
therefore by Proposition ��� the solution u will remain between them if
it does so initially� We therefore obtain for arbitrary T � 


sup
�	�
��T �

�juj� v� � c��

where c� depends only on the initial data� This implies that equation
��� is uniformly parabolic� Estimates for higher derivatives then follow
from standard theory for uniformly parabolic equations� The estimates
ensure the existence of a unique smooth solution for all t � 
 �see ��	���
To prove the convergence to the unique �see ���� solution of the maximal
surface equation we proceed similarly as in ����� From ��� we calculate
for v�� �

p
�� jDuj� that

�

�t

p
�� jDuj� � �vDiuDi�v

��H�

and therefore

d

dt

Z
	

p
�� jDuj� ��

Z
	
vDiuDi�v

��H�

�

Z
	
Di�vDiu�Hv�� �

Z
	
H�v���

where we have integrated by parts in the second last step using that
v��H � �u

�t vanishes on �� for t � 
� Therefore�Z �

�

Z
	
H�v�� �

Z
	

p
�� jDu�j� � j�j�

Since v � c� on ��� �
��� we obtainZ �

�

Z
	
H� � c�c�� j�j��

Moreover� by the global estimates for higher devivatives and Proposition
��
 �i� one veri�es that

sup

����

�� d
dt

Z
	
H�
�� � C�
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This gives

lim
t��

Z
	
H� � 
�

An interpolation argument using the global estimates then implies that
sup	 jHj � 
 uniformly as t���

���� Theorem� Let u� � R
n � R be spacelike and smooth� Then

the equation

���
�u

�t
�
p
�� jDuj� div

�
Dup

�� jDuj�

�

has a smooth solution for all t � 
 with initial data u��

Proof� Suppose without loss of generality that u��
� � 
� For
k � N� we let uk be the smooth solution of the initial�boundary value
problem

�uk
�t

�
p
�� jDukj� div

�
Dukp

�� jDukj�

�
in Bk�
� � �
����

uk��� 
� � u� in Bk�
��

uk��� t� � u� on �Bk�
�� �
����

Fix R � 
� Since u� is spacelike and u��
� � 
� an easy argument using
the mean value theorem �see �
� or ��
�� shows that

jxj� � u���x���

as jxj � �� Hence for su�ciently large k depending on R we have that
jxj� � u���x� � �
R� for jxj � k� For Mk

t � graphuk��� t�� this implies
that �Mk

t 
K�R�
� � � for all t � 
� Also� Mk
t 
K�R�
� is compact for

t � 
 as these sets are contained in the cylinders Bk�
� �R� We can
therefore apply the interior estimates of Theorem ��� or Corollary ���
to the solution �Mk

t � inside K�R�
� to obtain for t � c�n�R�

sup
Mk

t �C�R���

�v � jHj� � c��

Propositions ��
 and ��� with T � c�n�R� imply that

sup
Mk

t �CR���

jrmAj� � cm
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for t � �
� c�n�R�� and for all m � 
� These estimates translate into
uniform bounds �independent of k� on BR�
�� �
� c�n�R�� for v�uk� and
derivatives of all orders of uk � The height estimate of Proposition ���
furthermore yields that

sup
BR����
��c�n�R��

jukj � c�n�R� sup
BR���

ju�j��

Since R � 
 is arbitrary� we can select a subsequence of �uk� which
converges smoothly on compact subsets of Rn � �
��� to a solution of
��� with initial data u��
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